
Software Engineering – Writing Intensive



 Dr. Barry Wittman
 Not Dr. Barry Whitman
 Education:
 PhD and MS in Computer Science, Purdue University
 BS in Computer Science, Morehouse College

 Hobbies:
 Reading, writing
 Enjoying ethnic cuisine
 DJing
 Lockpicking
 Stand-up comedy



 E-mail: wittman1@otterbein.edu
 Office: C123 (Art & Communication Building)
 Phone: (614) 823-2944
 Office hours: MWF 9:00 – 10:15 a.m.

MWF 1:45 – 2:45 p.m. (in C142)
W 4:00 – 5:00 p.m.,
TR 10:00 – 11:30 a.m.,
TR 2:00 – 4:00 p.m.,
and by appointment

 Website:
http://faculty.otterbein.edu/wittman1/

http://faculty.otterbein.edu/wittman1/


100%

Major

Computer Science (1st or 2nd major)



 What's the purpose of this class?
 What do you want to get out of it?
 Do you want to be here?





 David Bernstein and Christopher Fox
 Introduction to Software Engineering
 Preview edition provided free to students on Brightspace
 Get it now!
 Please do not post it on the Internet



 You are expected to read the material before class
 If you're not prepared, you may be asked to leave
 You will forfeit the opportunity to take quizzes
 Much more importantly, you will forfeit the education you have paid 

so much money to get



 Java expertise
 Preparation for Computer Science Practicum
 Requirements analysis
 Agile software development
 Software design
 Testing and quality assurance
 Project planning and management
 Version control
 Working as a team





 You probably only cared if your code worked
 Software engineering has a different focus
 Is your code readable by others?
 Is your code easy to update and expand?
 How can a large number of people collaborate on one code base?
 How do you know if your code works?



 The code you do in this class will be Java
 Why?
 It runs on most platforms
 It's good for large-scale applications
 I know it really well
 It works with a solid unit-testing framework called JUnit

 If you need some Java refreshers, check out my book: 
https://attacking-problems.github.io/

https://attacking-problems.github.io/


 For more information, visit the webpage: 
http://faculty.otterbein.edu/wittman1/comp3100

 The webpage will contain:
 The most current schedule
 Notes available for download
 Reminders about projects and exams
 Syllabus
 Detailed policies and guidelines





 55% of your grade is one giant project
 You will work on teams of four to five students
 Each team gets to pick its project
 Some kind of (board) game is a good idea
 Lots of areas for additional features
 Lots of functionality to test



Phase Description Weight Due

Software Requirements Specification (Draft) What is your program supposed to do?
Customers often supply a specification, but you'll 
have to do it yourselves.

5% 09/13/2024

Software Requirements Specification (Final) 5% 09/20/2024

Design Document (Draft)
How will your program do what it's supposed to do?
Include a prototype of some features.

5% 10/11/2024

Design Document (Final) 10% 10/21/2024

Basic Functionality and Unit Tests A baseline of functionality with a suite of unit tests. 15% 11/08/2024

Final Program and Manual
Final, polished program, fully documented, with 
manual and system tests.

15% 12/06/2024



 All projects will be committed to private repositories on GitHub 
(https://github.com/) before the deadline

 Do not put projects in your public directories
 Late projects will not be accepted





 5% of your grade will be four written assignments
 After each phase of the project, you will be required to submit 

a written reflection on the process and how your team is 
doing

 Before the text of each assignment, you will fill out a table 
rating each member of your team (including yourself) in a 
number of areas
 This information will be used as part of a formula to weight the grade 

that each student gets on each project





 5% of your grade will be pop quizzes
 These quizzes will be based on material covered in the 

previous one or two lectures
 They will be graded leniently
 They are useful for these reasons:

1. Informing me of your understanding
2. Feedback to you about your understanding
3. Easy points for you
4. Attendance





 There will be two equally weighted in-class exams totaling 
20% of your final grade
 Exam 1: 09/23/2024
 Exam 2: 10/30/2024

 The final exam will be worth another 10% of your grade
 Final: 2:45 – 4:45 p.m.

12/13/2024





Week Starting Topics Chapters Notes

1 08/26/24 Introduction and Git 1, notes
2 09/02/24 Software Requirements 5 Labor Day
3 09/09/24 Software Processes 2 Draft Requirements Due
4 09/16/24 Scrum 3 Final Requirements Due
5 09/23/24 Software Quality Assurance 4 Exam 1

6 09/30/24
User Interaction Design and
Software Engineering Design

6, 7

7 10/07/24 Construction Techniques 8 Draft Design Document Due

8 10/14/24 Quality Assurance in Construction 9 October Break

9 10/21/24 System Testing 10 Final Design Document Due Monday
10 10/28/24 Deployment 11 Exam 2

11 11/04/24 Task Identification and Effort Estimation 12 Baseline Functionality and Tests Due

12 11/11/24 Financial and Economic Planning 13
13 11/18/24 Scheduling 14
14 11/25/24 Execution and Control 15 Thanksgiving
15 12/02/24 Review All Final Project and Manual Due





55% • Project

5% • Attendance on work days

5% • Written reflections

5% • Quizzes

20% • Two equally weighted midterm exams

10% • Final exam



A 93-100 B- 80-82 D+ 67-69

A- 90-92 C+ 77-79 D 60-66

B+ 87-89 C 73-76 F 0-59

B 83-86 C- 70-72



 You are expected to attend class
 You are expected to have read the material we are going to 

cover before class
 Missed quizzes cannot be made up
 Exams must be made up before the scheduled time, for 

excused absences
 Attendance will be recorded and graded for work days (which 

are all Fridays except for Thanksgiving week)



 I hate having a slide like this
 I ask for respect for your classmates and for me
 You are smart enough to figure out what that means
 A few specific points:
 Silence communication devices
 Don't use the computers in class unless specifically told to
 No food or drink in the lab



 We will be doing a lot of work on the computers together
 However, students are always tempted to surf the Internet, 

etc.
 Research shows that it is nearly impossible to do two things at 

the same time (e.g. use Reddit and listen to a lecture)
 For your own good, I will enforce this by taking 1% of your 

final grade every time I catch you using your computer for 
anything other than course exercises



 You may not use generative AI tools like ChatGPT, Claude, 
Copilot, or Gemini to design any software or write any 
documents or reflections in this course

 But, because this course is a bridge to the real world, such 
tools may be consulted as a resource when trying to finish a 
difficult section of code
 However, you must note that you did so in the comments for that 

code



 Don't cheat
 First offense: 
 I will try to give you a zero for the assignment, then try to lower your final letter 

grade for the course by one full grade
 Second offense:
 I will try to fail you for the course and try to kick you out of Otterbein

 Refer to the syllabus for the school's policy
 Ask me if you have questions or concerns
 You are not allowed to look at another student's code, except for 

group members in group projects (and after the project is turned in)
 Don't use AI tools like ChatGPT except as described in the previous 

slide



 The University has a continuing commitment to providing access 
and reasonable accommodations for students with disabilities, 
including mental health diagnoses and chronic or temporary 
medical conditions. Students who may need accommodations or 
would like referrals to explore a potential diagnosis are urged to 
contact Disability Services (DS) as soon as possible. DS will 
facilitate accommodations and assist the instructor in minimizing 
barriers to provide an accessible educational experience. Please 
contact DS at DisabilityServices@otterbein.edu. More info can 
also be found here. Your instructor is happy to discuss 
accommodations privately with you as well. 

mailto:DisabilityServices@otterbein.edu
http://www.otterbein.edu/ods




 Software:
 Instructions executed by a processor or
 Human-readable statements in a programming language

 Program: General term for a piece of software that can run on 
its own

 Library: Group of related sub-programs for accomplishing a 
specific collection of tasks



 A software product is one or more programs, sub-programs, or 
libraries and the data and supporting materials and services that 
allows a client to solve problems

 Bespoke software products are developed for a specific customer
 Code that makes the brakes work, written for a particular car company
 A website developed for a particular customer

 Generic software products are developed for a general market
 Microsoft Office, for example



 Engineering is applying theories and tools to the specification, 
design, creation, verification and validation, deployment, 
operation, and maintenance of products
 That's what the rest of the department does

 Software engineering is applying engineering discipline to 
building and maintaining software products

 Systematic and disciplined:
 Development
 Operation
 Maintenance

 High quality software products delivered on time at minimum cost



 Managerial concerns are about organization and control
 Project cost
 Time estimation
 Scheduling and tracking
 Team management
 Risk management
 Quality



 Technical concerns are about what product, how to build it, and 
building it
 Software requirements
 Design
 Programming languages and environments
 Coding standards
 Defect prevention, detection, and removal
 Version control
 Documentation
 Maintenance



 You've hardly had to think about these things before except in 
the vaguest way

 The programs you've written have been small
 The specifications have been provided by your instructor
 You haven't had to worry about interacting with more than 

one other teammate



 What exactly should it do? What if people disagree?
 How does this product fit into the rest of the stuff the company 

does?
 How will users interact with the product?
 What parts should the product have?
 What languages should it be written in?
 What standards should we use to write it?
 How do we know if the program does what it's supposed to?
 How much time and money will it take to make it?
 What kind of documentation will it need?
 How will it change in the future?
 How far along are we in the process of making it?



 The requirements themselves are huge
 The designs are large and complicated
 The code is long
 Testing gets harder because there's more to go wrong
 More people are on the project
 Tracking progress gets harder
 Communication gets harder
 More managers are needed





 Finish introduction to software engineering
 Using git and GitHub



 Read Chapter 1: Introduction
 Learn about git:
 https://www.youtube.com/watch?v=USjZcfj8yxE
 https://www.youtube.com/watch?v=HVsySz-h9r4

 Form your teams!
 Think about what kind of project you want to work on
 Fridays will usually be work days

https://www.youtube.com/watch?v=USjZcfj8yxE
https://www.youtube.com/watch?v=HVsySz-h9r4

	COMP 3100
	Who am I?
	How can you reach me?
	Who are you?
	Why are we here?
	Course Overview
	Textbook
	You have to read the book
	Course focuses
	Software Engineering
	In previous classes…
	Java
	More information
	Projects
	One giant project
	Phases
	Turning in projects
	Written Reflections
	Written reflections
	Quizzes
	Pop Quizzes
	Exams
	Exams
	Course Schedule
	Tentative schedule
	Policies
	Grading breakdown
	Grading scale
	Attendance
	R-E-S-P-E-C-T
	Computer usage
	Generative AI
	Academic dishonesty
	Disability Services
	Software Engineering
	Terms as used by the book
	Software product
	Software engineering
	Managerial software engineering concerns
	Technical software engineering concerns
	All this is really hard
	Questions when building software products 
	More problems for large products
	Upcoming
	Next time…
	Reminders

